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ABSTRACT
Social media is a platform for people to share and vote con-
tent. From the analysis of the social media data we found
that users are quite inactive in rating/voting. For example,
a user on average only votes 2 out of 100 accessed items.
Traditional recommendation methods are mostly based on
users’ votes and thus can not cope with this situation. Based
on the observation that the dwell time on an item may re-
flect the opinion of a user, we aim to enrich the user-vote
matrix by converting the dwell time on items into users’
“pseudo votes” and then help improve recommendation per-
formance. However, it is challenging to correctly interpret
the dwell time since many subjective human factors, e.g.
user expectation, sensitivity to various item qualities, read-
ing speed, are involved into the casual behavior of online
reading. In psychology, it is assumed that people have choice
threshold in decision making. The time spent on making
decision reflects the decision maker’s threshold. This idea
inspires us to develop a View-Voting model, which can es-
timate how much the user likes the viewed item according
to her dwell time, and thus make recommendations even if
there is no voting data available. Finally, our experimental
evaluation shows that the traditional rate-based recommen-
dation’s performance is greatly improved with the support
of VV model.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Human factors

Keywords
dwell time, recommendation, psychological

1. INTRODUCTION
Social media provides a good platform for their users to

easily publish, view and rate/vote multi-form contents via
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their computers and smart phones. In such a system a con-
tent recommendation service is an important application for
both common users and website providers. For the users,
popular social media has an overwhelming volume of con-
tent with varied quality, making users difficult to distill
the information of their interests. Thus, a recommenda-
tion service that helps users to find interesting content is
highly desirable. On the other hand, for some social web
sites (e.g., Amazon1), recommendation is often exploited by
the providers to encourage more transactions from users,
e.g., recommending laptop accessories after a person orders
a notebook.

Collaborative filtering (CF) is a widely adopted recom-
mendation technique. CF is mainly based on users’ behav-
iors of voting, rating or buying, which express their opinions
on certain items. While there exist various actions, without
loss of generality, here we consider only voting for simplic-
ity. CF assumes that users with similar interests exhibit
similar voting behaviors and thus measures the similarity of
two users based on their historical item voting. If a user has
few ratings, the derived similarity would not provide a good
basis to make effective recommendation.

Although lots of methods are proposed to alleviate the
impact of sparse data in certain degree [28, 26, 3, 7, 24,
5], they need users’ explicit opinions to make recommenda-
tions. Unfortunately, a common situation is that users often
stay quiet instead of taking actions to vote. Based on our
analysis of real data collected from a joke sharing mobile ap-
plication JokeBox2, a person on average only votes 2 out of
100 accessed items. Therefore, the data sparsity problem is
partially a voting sparsity problem. We call the phenomenon
that a user silently viewing an item without expressing their
opinions (i.e., giving a vote) “silent viewing behavior”. In
this work, we aim to exploit it for recommendation.

To view an item, no matter a vote is eventually given or
not, a person has to spend some time on it. The time spent
provides valuable information about her interest in the item
to some degree. Consider a shopping scenario where a lady
was comparing two handbags. Suppose she spent 1 minute
on one but 5 minutes on the other. Even if she eventually
bought neither one, the time difference indicates her prefer-
ence to the second handbag. Thus, from the standpoint of a

1http://www.amazon.com/
2http://itunes.apple.com/us/app/all-in-1-joke-box-no-
ads!/id363494433?mt=8
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merchant, it may be a good idea to recommend a handbag
similar to the second one with a lower price. As these silent
viewing behaviors actually indicate their potential interests
on certain items, we aim to exploit such information for
recommendation. Specifically, we carefully model the dwell
time, the time a user spends on an item, and convert them
into users’ “pseudo votes” on items. These pseudo votes are
then used to enrich the sparse user-vote matrix and hope-
fully improve the recommendation performance.

There exists some recent research works in psychology
which focus on the dwell time in the recognition process
known as information accumulation [27]. In their test of
two alternative forced-choice (2-AFC) task, the participants
are required to choose an answer out of two choices (e.g.,
yes or no). The psychologists proposed a diffusion model
to simulate this recognition process, in which people collect
evidence for decision making. It assumes that a person has
an action bound in making choices and would not make deci-
sion until the evidence of one choice exceeds the bound. The
dwell time reflects the process of information accumulation.
Generally, the easier the task is, the shorter the dwell time
will be. However, this model can not be applied directly to
our case due to the following reasons.

• Experiments of the diffusion model are designed to re-
quire participants to follow certain strict rules and then
make an explicit response for each testing task. In contrast,
viewing items in social web sites is such a casual behavior
that people may terminate the viewing process at any time.
Neither do they need to give a response.

• Tasks tested with the diffusion model are very specific
and usually quite simple (e.g., read a word, scan a short
symbol string). The dwell time is easy to model in those
tasks. In our case, however, the dwell time on items may
vary a lot due to the factors from both items and persons.
On one side items may differ not only in their form and vol-
ume (e.g., different length of articles, video, different size of
pictures, etc.), but also in their quality to attract further
consumption. On the other side there are many subjective
human factors to affect the dwell time. For example, dif-
ferent people receive information at different speed and the
time of consuming the same item (e.g., reading an article)
may differ from person to person. Furthermore, some peo-
ple are very “picky” and are willing to spend time only on
items which match their tastes and expectations. However,
some people are rather tolerant and would like to read all
items despite their diversified quality. All these factors on
the sides of items and persons jointly determine the dwell
time of a person on a certain item.

• In 2-AFC, positive correlation is observed between dwell
time and answer accuracy. Thus the action bound is sub-
jectively set by the researchers in accordance with the par-
ticipant’s answer accuracy, where higher accuracy indicates
a more careful personality and thus a higher action bound.
In real life where people view and vote items, there are no
such “right” or “wrong” answers as in 2-AFC, and thus the
bound, if existing, can not be determined heuristically.

In this work, we propose a Viewing-Voting (VV) model
to capture both the silent viewing and explicit voting be-
haviors, and explain the implication behind a person’s dwell
time on an item. We assume that each item has a qual-
ity value and each person has multiple latent action bounds
(LABs). These LABs determine the expectation levels of
items that may motivate the person’s viewing and voting

behavior. When a person begins to view an item, one of her
LABs is selected. Then, we have the following three situa-
tions. First, if the item quality is lower than the bound, the
dwell time tends to be short, suggesting that the user does
not enjoy the article and thus stops reading before reach-
ing the end. Second, if the quality matches the bound, the
dwell time is close to the time needed to “comprehend the
item” (i.e., finish reading the article). Finally, if the quality
is much higher than the bound, the dwell time is long be-
cause the person tends to read a story more before letting
it go, indicating that she finds it really good. This models
the viewing behavior of users.

As for the modeling of the voting behavior, we consider
that if the selected bound is smaller than the item quality,
the user is more likely to give a positive vote. Otherwise, the
user may simply keep silent. With the VV model, even if a
user leaves no vote after viewing an item, we can still esti-
mate the user’s possible opinion based on the dwell time and
exploit it for recommendation. To sum up, our contribution
is three-fold.

• By analyzing the data, we discover users’ infrequent
voting behavior and coin the voting sparsity problem. We
argue that this problem can be addressed in content viewing
applications by mining the dell time.

• We propose a Viewing-Voting (VV) model to i) explain
people’s silent viewing behavior based on their dwell time on
the item; and ii) model the users’ voting behavior. Based
on the VV model, we develop a strategy that interprets the
dwell time to user’s possible vote, referred to as pseudo vote
and exploit it for recommendation.

• We conduct extensive experiments on a real dataset and
demonstrate the improvement of conventional recommenda-
tion techniques when combined with VV model.

The rest of the paper is organized as follows. Section 2
presents our data analysis results, which serve as a guidance
for the model development. Section 3 and Section 4 provide
details of the VV model and show how it interprets dwell
time for recommendation. Section 5 and Section 6 respec-
tively shows the evaluation result and reviews the related
work. Finally Section 7 concludes the paper.

2. PRELIMINARIES
In this section we perform a data analysis and show the

results, some of which guide the design of the VV model.
The analysis mainly consists of three parts, (i) revealing the
fact of vote sparsity, (ii) testing the existence of the action
bound, and (iii) exploring the characteristics of dwell time.

2.1 Data Analysis
The data we use are the log of JokeBox from June to

November, 2011. JokeBox is a popular iPhone applica-
tion, where people publish and vote jokes. Figure 1 shows
the snapshots of its main interfaces. When the application
starts, a list of jokes with abstract is displayed as shown
in Figure 1a. Users need to tap on some joke to see the
full content, whose interface is shown in Figure 1b. After
reading a joke, user can vote for (i.e., the green hand in Fig-
ure 1b) or against (which is the red hand in Figure 1b) the
joke or simply retreat to the list by tapping the“return”but-
ton at the upper-left corner. The log records such actions
as “tap”, “vote” and “retreat” with time stamp. The dwell
time is obtained by computing the time stamp difference be-
tween “tap” and “retreat” of the same user on the particular

990



(a) JokeBox Snapshot 1 (b) JokeBox Snapshot 2

Figure 1: Snapshot of JokeBox.

item. There are in total 638,899 records containing 108,743
users and 143,258 items (jokes)3. The log also records the
final vote situation for each item, i.e., the number of positive
votes minus that of negative votes, which, as an example,
is 12 for the joke in Figure 1b. This value to some degree
reflects the public evaluation for this item. Thus, in this
work we treat it as the quality of the item. Additionally,
the statistics from our preliminary analysis show that the
negative vote occupies a rather small proportion (1,395 neg-
ative votes in 143,258 items) and thus in this work we only
focus on analyzing and modeling positive voting and silent
viewing behavior.

2.1.1 Cause of data sparsity
We first find statistics on the frequency of user giving vote

and define a metric user-voting ratio ru in Equation (1).

ru =
Number of votes given by u

Number of items viewed by u
× 100% (1)

The statistics of ru is shown in Table 1. We can see that
most (97.91%) of users’ voting ratio is quite small (less than
30%). Moreover, 95.93% of people never give a vote. A
further analysis shows that the average user-voting ratio is
only 2.02%. Thus the data sparsity problem, or exactly the
voting sparsity problem, is caused by the user’s infrequent
voting behavior although they may be quite active in viewing
items.

Table 1: Statistics of user-voting ratio

ru(%) No. Percent (%) Cumu. percent (%)
0 90202 95.93 95.93

0∼30 1861 1.98 97.91
30∼60 1067 1.13 99.04
60∼100 903 0.96 100

2.1.2 Existence of action bounds
We then test i) whether there exists action bounds for

users when viewing and voting an item and ii) whether the
bound is different from person to person.

We firstly group people with regarding to the number of
positive votes they give. Intuitively a person’s bound, if

3Not all users’ actions were recorded due to the version issue.
However, since the recorded users are quite random, the
analysis result is still reliable.

existing, would be high if she had high expectation on the
item quality and hardly gave a positive vote. Next, for each
person in the group, we identify all her accessed items and
classify them into two categories, “like” and “neutral”, de-
pending on whether she gave (positive) vote to the items or
not. Then, for each person we compute the average quality
values of her accessed items from the two categories, re-
spectively. Finally, we average the quality values (i.e., as
mentioned above, the final vote status) of these two cat-
egories over all persons with the same number of positive
votes. The result is shown in Figure 2. Note that as the
number of positive vote increases, the sample size of users
who give exactly that number of votes decreases. Therefore
we only display the result of groups that have more than 20
samples in Figure 2.
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Figure 2: Existence of action bound

It can be easily seen that for the first 10 groups the “like”
category (blue solid line) is above the “neutral” one (green
dashed line). It indicates that on average the quality of
the items in the “like” category for a person is bigger than
the quality of her accessed items that failed to receive her
positive vote. Also, the average item qualities for both cat-
egories have a decreasing trend as the number of positive
vote in x axis increases. This supports the action bound
hypothesis. The persons who give less positive votes may
have higher level of expectation on the item quality, namely
the higher action bound. Thus, only the items with higher
quality, which exceeds her action bound, can motivate her
to vote positively. Finally, for large numbers of positive vote
(x > 10), the trend of these two categories becomes unclear.
One possible reason is that people may have multiple bounds
whose values are quite different. As the number of positive
votes increases, different bounds are likely to be selected to
guide the voting behavior and thus affect the statistic curve.

2.1.3 Trend of dwell time
Next we explore the trend of the dwell time. As mentioned

in Section 1, the dwell time for item viewing is different from
item to item due to their variant formats (e.g., text, picture,
video). For jokes which consist of text, the intuition is that it
should be proportional to the text length. We group all the
viewing events according to the item length. For the view-
ing events with the similar item length we further classify
them into two categories, those that end with a positive vote
from users (denoted as “like”) and those with silent viewing
(denoted as “neutral”). For each category we calculate their
average dwell time and plot it with regarding to the item
length in Figure 3.

From the figure, we can see that for both categories the
dwell time is positively proportional to the item length. This
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Figure 3: Trend of dwell time w.r.t item length

is reasonable because longer texts take more time for peo-
ple to read. Another interesting observation is that the blue
solid line is always above the green dashed line, suggest-
ing that the average dwell time for positively voted items is
longer than that of the neutral ones when the item length
is similar. Recall that in Figure 2 we found positively voted
item has a higher quality than neutral. This suggests that
people tend to spend more time on the items of higher qual-
ity. This observation makes sense because in reality when
a person meets a good item, e.g., a really funny joke, she
is more likely to read it multiple times, resulting in longer
dwell time.

Finally we explore the distribution of dwell time. As
shown in Figure 3, the average dwell time correlates with the
story’s length. Therefore we first group all stories according
to their length. Then we select the group of items with the
same length which has most number of views and count the
frequency of the dwell time. Figure 4a shows the frequency
for stories whose length ranges from 36 to 46. Note that the
x-axis is in log-scale. The statistical result indicates that the
dwell time may satisfy a log-Gaussian distribution. To fur-
ther prove this hypothesis, we compare the log value of dwell
time sample to the standard Gaussian distribution and plot
the quantile-quantile curve in Figure 4b. As can be seen, the
blue markers closely lie on the red straight line, indicating
that the two distributions are linearly related. Therefore it
is proper to use a log-Gaussian distribution to model the
dwell time.
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Figure 4: Characteristics of dwell time

In the end of this section, we summarize our observa-
tions into principles that will guide the design of our model.
Firstly, people tend to have multiple action bounds which
differ from person to person (see Figure 2). Secondly, the
length of a textual item determines the expected dwell time,
which at the mean time is affected by the difference between
the item’s quality and the user’s action bound (see Figure 3).
Finally, it is proper to choose log-Gaussian distribution to
model the dwell time (see Figure 4).

3. VIEWING-VOTING MODEL
Table 2: List of Symbols

Symbol Meaning
u the user
b latent action bound (LAB)
π probability of LAB selection
r reading speed
α quality sensitivity
v vote
t dwell time
q the item quality
l the item length
p the Bernoulli parameter

In this section we discuss the details of the model. Table 2
lists the symbols we used in the work. We assume that each
user has several latent action bounds (LABs). When view-
ing an item, the user will randomly select a LAB, which, to-
gether with the quality of the item, jointly affects the user’s
voting behavior, i.e., to leave a vote or not. Generally, if the
selected LAB is bigger than quality, the user is less likely to
leave a vote and vice versa. The LABs can be treated as the
expectation of the person to the quality of the item. The
higher the user’s expectation is, the harder the item can en-
tertain her, and vice versa. However, different from item’s
quality that can either be measured or reflected (by people’s
votes), the “expectation” is hard to measure. Therefore we
model it as a hidden parameter.

Besides the voting, another value, the dwell time, which
is corresponding to the viewing behavior, is also generated.
This is a metric that measures how long the user would stay
on this item before moving forward. In general, it is affected
by LAB and quality in a way that is similar to how the vote
is produced. For big LAB and small quality, the dwell time
tends to be short since the item can hardly entertain the
user. For small LAB and big quality, the dwell time would
be long as the user is extremely attracted to the item.

u b

t

v

l

q

p

r

Viewing 
behavior

Voting
behavior

Figure 5: The graphical model. The shaded circles stand for
observable values while the unshaded ones for latent vari-
ables.

The graphical model is shown in Figure 5. Each user u
has a set of LABs. Each item consists of two components,
i.e., property l (in our case it is the length of the joke) and
quality q. The quality q and bound b jointly generate the
vote v, where 1 means positive vote and 0 no vote.

The dwell time t is determined by two groups of factors,
(i) user-related and (ii) item-related. As the name suggests,
the former one stands for the personalized factors that affect
the dwell time. The latter one, on the other hand, may be
different as the item differs. Specifically in the graph model,
the t is generated by five parameters, among which LAB
b, reading speed r and quality sensitivity α are user-related
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while the other two, namely q and l are item-related. The
speed r measures how quickly a person can read while the
sensitivity α reflects how sensitive the person is to items
of diversified quality. The details will be discussed later in
Section 3.2.

The item-related factors have different semantics with re-
garding to the different item types. In this work, we focus
our attention on the textual item and discuss these two fac-
tors in the context of an article. In the graphical model,
the q represents the quality of the item and l represents the
length of the article.

Algorithm 1 Generation process

1. Choose a LAB b ∼ Multinomial(πi), 1 ≤ i ≤ k

2. Choose a parameter p ∼ Be(q, b)

3. Choose a vote v ∼ Bernoulli(p)

4. Choose a time log t ∼ N (μ, σ2)

The generation process is summarized in Algorithm 1.
The user first selects one of k LABs, where the probability
of selecting ith bound bi is πi. After the LAB b is generated,
it goes along with the item’s quality q to determine the vote,
which is modeled as a Bernoulli process and the parameter p
satisfies a Beta distribution with parameters (q, b). We will
discuss its details in Section 3.1.

Finally, a dwell time t is generated by a log-Gaussian dis-
tribution whose mean is μ and variance is σ2, as suggested
in Figure 4. Details of the dwell time model as well as these
parameters are discussed in Section 3.2.

3.1 Model of Voting Behavior
Here we discuss the model of voting. As described earlier,

it is a Bernoulli process, where the probability of positive
vote is p while the neutral is 1 − p. The parameter p is
produced by a Beta distribution Be(q, b) defined in Equation
(2).

Be(p; q, b) =
Γ(q + b)

Γ(q)Γ(b)
pq−1(1− p)b−1 =

pq−1(1− p)b−1

B(q, b)
(2)

where q is the item’s quality and b is the user’s LAB.
In probability theory, Beta distribution is often used to

describe a prior distribution of a parameter for some distri-
bution, e.g., Bernoulli distribution. Specifically, the q and
b jointly determine the probability distribution of p. When
q > b ≥ 1, the value of p is more likely to be large. In case
of 1 ≤ q < b, the generated p is closer to 0. That means, the
user is more likely to give a positive vote if the quality of
the item is bigger than the LAB b. If not, a silent viewing
may possibly happen.

To sum up, given a selected LAB b and an item whose
quality is q, the probability of a positive vote is given in
Equation (3).

P (v = 1|b, q) =
∫ 1

0
P (v = 1, p|b, q)dp

=

∫ 1

0
p · Be(p; q, b)dp =

q

q + b

(3)

Similarly, the probability of no vote (v = 0) is shown below:

P (v = 0|b, q) = 1− P (v = 1|b, q) = 1− q

q + b
=

b

q + b
(4)

Finally, Equation (3) and (4) can be unified as below.

P (v|b, q) = (1− v) · b+ v · q
q + b

(5)

3.2 Model of Dwell Time
In this section we discuss the model of dwell time. Specif-

ically, we consider the following three cases with regarding
to selected LAB b and item quality q:

• b > q. The item is not good enough to motivate the user
to vote. In this case, the user would not spend too much time
on this item and she would even quit before reaching the end
of the passage.

• b ≈ q. The item’s quality is very close to the user’s LAB,
which may lead to the user’s hesitance of voting. Therefore,
the user may continue to read the item to its end. And the
time is related to the item’s property, i.e., the length of the
article.

• b < q. The item’s quality goes beyond the user’s expec-
tation and naturally the user may spend much more time
reading this item and may remain on it after finishing read-
ing, making the time longer than expected.

Based on the result of statistical analysis obtained in Sec-
tion 2, we use log-Gaussian distribution to model the dwell
time. The mean value μ is determined by the item’s length l,
quality q, the selected LAB b as well as two personalized pa-
rameters reading speed r and quality sensitivity α. Recall in
Figure 3 we found that the average dwell time is linearly cor-
related to the item’s length and thus l/r measures how long
the person would spend reading a whole article of length l.
The sensitivity α > 0 determines the influence of the differ-
ence between quality and LAB, i.e., q− b on the dwell time.
Given the item’s length l, quality q and the user’s LAB b as
well as r and α, the probability that the user would spend
time t on this item is given in Equation (6).

P (t|l, q, b, r, α) = N (log t;μ(r, l, α, q, b), σ2)

=
1√
2πσ2

· e− (log t−μ)2

2σ2

where μ(r, l, α, q, b) = log(l/r) + α(q − b)

(6)

Note that if q > b, the mean dwell time would increase and
vice versa. The sensitivity α determines the time growth-
decay proportion and is different from person to person. Big
α may indicate a “picky” person whose dwell time is heav-
ily quality-dependent, i.e., spending little time on trash but
much time on high-quality items. The small α, on the other
hand, suggests a “tolerant” person whose dwell time does
not vary too much on items of diversified quality.

3.3 Model Learning
Based on earlier discussion, the model parameters are

LAB distribution πi, 1 ≤ i ≤ k, the series of LABs bi, read-
ing speed r, quality sensitivity α and dwell time variance σ2.
Let θ denote all of these parameters. The learning is a pro-
cess to determine proper values for θ in order to maximize
the probability of observed data, i.e., the item’s quality q
and length l, the user’s vote v ∈ {0, 1} as well as her dwell
time t.

Let (Q = {q1, · · · , qn},L = {l1, · · · , ln}) denote the n
items accessed by the user while V = {v1, · · · , vn} and
T = {t1, · · · , tn} respectively stand for the vote and dwell
time of the user on the corresponding item. FinallyB are the
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unobserved LABs that affect the user’s behavior when view-
ing the item. A loss function with constraint

∑k
i=1 πi = 1 is

defined in Equation (7).

L(θ;Q,L,V,T,B) = logP (V,T,B|Q,L, θ) + λ(

k∑
i=1

πi − 1)

=
n∑

i=1

k∑
j=1

τij logP (vi, ti, bj |qi, li, θ) + λ(
k∑

i=1

πi − 1)

=
n∑

i=1

k∑
j=1

τij(logP (vi|qi, θj) + logP (ti|li, qi, θj) + log πj)

+ λ(

k∑
i=1

πi − 1)

(7)where λ is a Lagrange multiplier and τij is a judge function
defined in Equation (8).

τij =

{
1; if LAB bj is selected for item i

0; otherwise
(8)

We use EM (expectation-maximum) algorithm [8] to solve
the problem. In the following, θs denotes the parameter
values for the sth iteration.

E-step.

Es+1(τij) = P (bsj |vi, ti, qi, li, rs, αs)

=
P (vi|bsj , qi)P (ti|li, qi, bsj , rs, αs)P (bsj)∑k

m=1 P (vi|bsm, qi)P (ti|li, qi, bsm, rs, αs)P (bsm)

=
P (vi|bsj , qi)P (ti|li, qi, bsj , rs, αs)πα

j∑k
m=1 P (vi|bsm, qi)P (ti|li, qi, bsm, rs, αs)πα

m

(9)

The definition of P (vi|bj , qi) and P (ti|li, qi, bj , r, α) are in
Equation (5) and (6).

M-step.

πs+1
j =

∑n
i=1 E

s+1(τij)∑n
i=1

∑k
j=1 E

s+1(τij)
=

∑n
i=1 E

s+1(τij)

n
(10)

n∑
i=1

Es+1(τij)

(
1− vi

(1− vi)b
s+1
j + viqi

− 1

bs+1
j + qi

)

−
n∑

i=1

Es+1(τij)

(
αs(log ti − log(li/r

s) + αs(bs+1
j − qi))

(σs)2

)
= 0

(11)

σs+1 =

√√√√∑n
i=1

∑k
j=1 E

s+1(τij)(log ti − μs
ij)

2∑n
i=1

∑k
j=1 E

s+1(τij)

=

√∑n
i=1

∑k
j=1 E

s+1(τij)(log ti − μs
ij)

2

n

(12)

log rs+1 =

∑n
i=1

∑k
j=1 E

s+1(τij)(log li − log ti − αs(bsj − qi))∑n
i=1

∑k
j=1 E

s+1(τij)

(13)

αs+1 =

∑n
i=1

∑k
j=1 E

s+1(τij)(log(li/r
s)− log ti)(b

s
j − qi)∑n

i=1

∑k
j=1 E

s+1(τij)(bsj − qi)2

(14)

All parameters except bj can be directly computed while bj
can be obtained by finding the root for Equation (11) with
Newton’s method.

4. RECOMMENDATION
Here we introduce how to use the proposed model to

interpret the silent viewing behavior for recommendation.
Specifically, we split the task into three phases. In phase I,
given a user’s dwell time on an item, the model is applied
to find her LAB that is most likely to be selected to guide
the viewing behavior, referred to as LAB choice estimation.
In phase II, namely vote prediction, the probability is com-
puted that how likely the user would vote for the item given
this estimated LAB. These “pseudo votes” are used to en-
rich the original sparse user-vote matrix. Finally in phase
III, conventional rating-based recommendation techniques,
e.g., CF, is applied to make recommendation based on both
the actual and pseudo votes.

Phase I.
Formally, for a particular item o, let qo and lo respectively

denote its quality and length. Suppose the dwell time of ith

user on the item is toi . Let ui = {〈πij , bij , σi, ri, αi〉|1 ≤
j ≤ k} denote the ith user’s profile, which is obtained after
model training. LAB choice estimation is to find a LAB b∗io
that is most likely to be selected to generate the observed
dwell time, as shown in Equation (15).

b∗io = argmaxbij
P (toi |πij , bij , σi, ri, αi)

= argmaxbij
πijN (log toi ;μ(ri, l

o, α, qo, bij ), σ
2
i )

(15)

Phase II.
After a proper estimated LAB b∗io is found, we can inter-

pret the user ui’s dwell time to her possible preference on
that item, which is modeled as the expected vote as given
in Equation (16).

E(voi |qo, b∗io ) = 1 · qo

qo + b∗io
+ 0 · b∗io

qo + b∗io
=

qo

qo + b∗io
(16)

Phase III.
After the first two phases, the “pseudo votes” from the

VV model enrich the original sparse voting matrix, on which
conventional recommendation techniques can be applied.

5. EVALUATION
For evaluation we use the real log from JokeBox as in-

troduced in Section 2. Although using multiple data would
strengthen the work, it is really hard to obtain such view-
vote data from another domain. In our experiments, we only
keep the users who have viewed no less than 20 items. As a
result, we obtain 960 users and 19,196 items, among which
there are 2,053 votes and 33,158 silent views. As the default
in our experimental setting, the number of LABs is set to 5
unless noted explicitly.

For evaluation, we split the vote data into four parts and
conduct 4-fold cross-validation. For every round, three parts
of the data are used as the training data to obtain user pro-
files with Equation (10) to Equation (14). Then the remain-
ing part is used as test data.

Two metrics are exploited in the evaluation. The first one
is referred to as hit ratio. For each target user, a list of can-
didate items are ranked and recommended. Among them
some do receive positive vote from the target user, treated
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as a “hit”. Note that a random recommendation could also
rank these candidate items by randomly generating a rec-
ommendation list. The hit ratio measures the improvement
of the proposed recommendation solution over the random
recommendation. The performance of a random recommen-

dation, as shown in [33], can be represented as |M|
|C|·|U| where

C is the collection of candidate items, U is the collection of
users while M is the set of test data. Formally, the cut-off
hit ratio at rank N is defined in Equation (17).

hratio@N =
Number of hits before N

N
× |C| · |U |

|M | (17)

Note that higher hit ratio indicates better performance.
The second adopted metric is hit rank. Suppose the ranks

of hits are 〈r1, · · · , rm〉, where 1 ≤ r1 < · · · < rm ≤ |R|
and |R| is the size of recommendation list. Ideally, a perfect
ranking scheme should rank all items in the head of the list
and results in such equation ri = i. The hit rank measures
how close the ranking list of the proposed solution is to the
ideal one’s. Formally, it is computed via dividing the sum

of ri by that of a perfect ranking scheme, which is N·(N+1)
2

.
The formal definition is given in Equation (18).

hrank@N =
2
∑N

i=1 ri

N · (N + 1)
(18)

Since ri ≥ i, smaller value of hit rank indicates a better
recommendation strategy.

5.1 Model Initialization
As for the parameter initialization, the starting value for

impact αu
0 is set to 1. Suppose a user u’s viewing history

is {〈qui , lui , tui 〉|1 ≤ i ≤ nu}, where qui and lui are the item’s
quality and length, tui is the user’s dwell time spent on her
ith accessed item. The user’s reading speed ru0 is initially
set as in Equation (19).

ru0 =

∑nu
i=1 l

u
i∑nu

i=1 t
u
i

(19)

The variance (σu
0 )

2 is initially set as the variance of log tui
as in Equation (20).

(σu
0 )

2 =

∑nu
i=1(log t

u
i −

∑nu
i=1 log tui

nu
)2

nu

(20)

The probability of LAB selection πj is initialized as a uni-
form distribution. For the initial values of LABs, we select
random numbers from 1 to 1000 4.

5.2 Experiment
In this section we show the results of evaluation. We use

two variants of collaborative filtering, i.e., user-based collab-
orative filtering (UCF) [12] and SVD++ [16], both imple-
mented by MyMediaLite [11]. We are aware of that there
are many Matrix Factorization variants, e.g., [1, 10] and usu-
ally they embed such extra information as user/item meta
data, item’s textual content. As we believe that our proposal
is complementary to existing techniques, in this evaluation
we only demonstrate how much improvement our solution
brings to the rating-based recommendation techniques that
adopts a naive interpretation of silence view. Particularly

4We tested different values in the experiment and found no
significant difference in performance.

we adopt two baselines, respectively denoted as Aggressive
and Neutral. The former interprets the silent viewing be-
havior as a rating of 0.1 while the latter treats it as a rat-
ing of 0.5 (neutral). Recommendations that adopt these
three techniques (Aggressive, Neutral, VV) are denoted as
A-UCF/SVD++, N-UCF/SVD++ and VV-UCF/SVD++.
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Figure 6: General comparison

The general performance of the six solutions are shown
in Figure 6. We can see that methods that combine with
our proposed VV model (VV-UCF/SVD++) benefit an im-
provement over those with baseline (A/N-UCF/SVD++).
Both Aggressive and Neutral scheme adopt a naive way
of interpreting dwell time, either to negative vote or neu-
tral. Therefore it is not as accurate as the VV model which
provides a complex simulation of the dwell time that in-
volves multiple subjective human factors such as expecta-
tion (LAB), reading speed (r) and the sensitivity of quality
difference (α). Note that in Figure 6a and Figure 6b, A-
UCF and N-UCF display equal performance. For UCF, a
cosine similarity metric is adopted to measure the prefer-
ence similarity between people. Therefore different assigned
values, e.g., 1 or 2.5, for the unvoted items does not change
the relative similarity between users, leading to the equal
performance of A-UCF and N-UCF.

We then test the impact of data sparsity. Note that in
previous experiment four-fold cross-validation is used. That
means 25% of voting data is used as test data. Here, we eval-
uate the performance with regarding to different numbers of
cross-validation, where bigger value indicates more training
data and less test data and vice versa. The performance
where N = 20 is shown in Figure 7. From Figure 7a, we can
see that the increase of cross-validation number brings better
recommendation performance for UCF since more training
data is available. In Figure 7c however, the data sparsity
does not seem to have an obvious impact on SVD++. It
may be due to the strength of SVD++ to UCF. Instead of
basing on the raw user-item voting data, the SVD++ cre-
ates virtual feature space for each user and item, thus may
be more resistant to data sparsity than UCF. Finally in Fig-
ure 7b and Figure 7d, the performance degrades as the num-
ber of cross-validation increases for both UCF and SVD++.
Recall the definition of these two metrics in Equation (17)
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Figure 7: Evaluation on the impact of data sparsity

and Equation (18), we can see that compared with hit ratio,
hit rank focus more on the ranks of the recommended item.
When the training data increases, the test data decreases,
leading to more noise in candidate item. However, we can
see that VV-SVD++ suffers less degrade compared to base-
line, demonstrating its accurate interpretation of dwell time.
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Figure 8: Evaluation on the impact of k

In the final experiment, we test the impact of LAB size
lab. Figure 8 shows the performance of UCF and SVD++
that are combined with VV model w.r.t different LAB size.
As can be seen, generally smaller k achieves better perfor-
mance. Particularly when N > 5 for hit ratio and N > 10
for hit rank, VV model with single LAB display best per-
formance. This scenario suggests that for this joke-reading
dataset, people are quite consistent in terms of expectation
and small number of LAB fits the dataset better than large
one. A further check of learned user profiles reveals that
when k > 1, the learned dwell time variance σ2 for all users
tend to be small. But when k = 1, for a small number
of people, their learned dwell time variance σ2 is extremely
huge, which means their time spent on items vary a lot and

the prediction of their dwell time would be quite inaccurate.
This observation provides such a possibility that besides the
values of LAB, the number k might be another personalized
parameter, which will be explored in future work.

6. RELATED WORK
Our work is related to three areas, i) data sparsity in

recommendation, ii) implicit user feedback modeling and iii)
diffusion model in psychology.

Data Sparsity in Recommendation. Data sparsity is
a really big issue that impacts the performance of collabora-
tive filtering in recommendation. Different approaches have
been developed to incorporate various features on users and
items into recommendation to tackle this problem. To build
the connections among users, new similarity measurement
were proposed to find the similar users in [3, 5]. To cre-
ate new connections among items, different item-based sim-
ilarity measures are proposed for different types of items,
such as textual items [23, 28], POIs (point-of-interest) [32],
movies [24] etc. Furthermore, Matrix factorization (MF) [17]
is proposed to flexibly embed various features. For instance,
in [22, 21], social network is imported to constrain the factor-
ization process in such a way that socially connected peo-
ple tend to have similar user feature vectors. Also in [1],
Agarwal et. al. proposed fLDA, a hybrid recommendation
method that combines matrix factorization with LDA, aim-
ing to exploit items with rich textual information to improve
the rate prediction. To sum up, these works are all based
on the condition that users provide explicit opinions. Our
work tries to throw away this burden, and tackle the sparsity
problem from a new angle, i.e., predicting user’s interest in
items according to her dwell time.

Study on Implicit Feedbacks. There are some previ-
ous works focusing on different types of implicit feedbacks,
e.g., “playcount”of music tracks or albums [14], frequency of
visits to a content or category [25] and so on. Some meth-
ods are also proposed to integrate implicit feedbacks to the
rating-based solution [19]. We believe that our model is
complement to these works.

There are a few existing works to study dwell time as im-
plicit feedback of users. In [2, 4, 6], dwell time is treated
as an extra feature to rank the relevance of retrieved web
page to user’s query. In [15, 30], the correlation between
display time and document usefulness/relevance is studied
in information-seeking task. In [20], a system BrowseRank
was developed which makes use of user’s browsing behavior
to rank the importance of web page. Other works [13, 31]
try to make use of people’s watching time for recommending
TV shows or programs. Recently in [25], a positive correla-
tion is observed between display time of picture and user’s
high ratings. Although Liu et. al. [18] used Weibull distri-
bution to model people’s dwell time on web pages, we found
that a log-Gaussian distribution is more proper for the dwell
time on jokes, as shown in Figure 4. Furthermore, unlike
previous works that simply interpret longer dwell time to
positive feedback, we explore the latent human factors that
determine the dwell time by borrowing the concepts from
Psychology, which to our best knowledge is the first work.

Diffusion Model in 2-AFC Task. Psychologist pro-
posed a diffusion model [27] to simulate a person’s response
time when facing a two-alternative forced choice (2-AFC)
task. The participant is required to make a judgement on
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a simple task, e.g., whether a given letter string is a legal
English word [29]. Researchers measure the response time
as well as the answer precision. The diffusion model, also
known as Wiener diffusion process [29], was first studied
in [9] and later implemented by Ratcliff et. al. [27]. It aims
to help scientists understand the human recognition process
with regarding to factors such as gender, age and so on.
The model assumes each person has a response threshold
and the choice is made when the accumulated evidence hits
the threshold. The response time is also determined by how
fast the information is accumulated, namely the drift rate
as in [27], which is a normally distributed variable.

As mentioned in Section 1, our scenario (item-viewing in
social web) is much more complex than 2-AFC task and the
diffusion model can not be directly applied.

7. CONCLUSION AND FUTURE WORK
In this work we propose a Viewing-Voting (VV) model

to exploit dwell time for recommendation. Traditional rec-
ommendation strategies are based on the opinion-expressing
behaviors and do not consider silent viewing behavior. The
VV model is developed to bridge the gap by correctly in-
terpreting the dwell time to “pseudo vote”. As the experi-
ment shows, the performance of traditional recommendation
is greatly improved with the support of our VV model.

As for future work, we will study the trend of dwell time
with regarding to different item formats (e.g., audio, video,
picture etc), and consider different application scenarios (e.g.,
online shopping, mobile APP recommendation etc).
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